
Neural Networks for Real-time Pathfinding in Computer Games

Ross Graham1, Hugh McCabe1 & Stephen Sheridan1

1 School of Informatics and Engineering, Institute of Technology at Blanchardstown, Dublin 15

Contact email: Ross.Graham@itb.ie

Abstract
One of the greatest challenges in the design of realistic Artificial Intelligence (AI) in computer games is
agent movement. Pathfinding strategies are usually employed as the core of any AI movement system.
The two main components for basic real-time pathfinding are (i) travelling towards a specified goal
and (ii) avoiding dynamic and static obstacles that may litter the path to this goal. The focus of this
paper is how machine learning techniques, such as Artificial Neural Networks and Genetic Algorithms,
can be used to enhance an AI agent’s ability to handle pathfinding in real-time by giving them an
awareness of the virtual world around them through sensors. Thus the agents should be able to react in
real-time to any dynamic changes that may occur in the game.

Keywords
Neural Network, Genetic Algorithm, Pathfinding.

1. Introduction
Agent movement is one of the greatest challenges in the design of realistic Artificial Intelligence (AI) in
computer games. This challenge is compounded in modern games that are becoming more dynamic in
nature as a result of middleware engines such as Renderware [Renderware] and Havok [Havok] These
middleware companies allow game developers to spend more time developing interesting dynamic
games because they remove the need to build custom physics engines for each game. But these new
dynamic games create a strain on existing pathfinding strategies as these strategies rely on a static
representation of the virtual world of the game. Therefore, since the games environment can change in
real-time, the pathfinding strategy also has to occur in real-time. The two components for basic real-
time pathfinding are (i) heading in the direction of a goal and (ii) avoiding any static and dynamic
obstacles that may litter the path to that goal in real-time.

This paper will highlight the need for real-time pathfinding and how effectively a neural network can
learn this initially at a basic level. It will then discuss the steps taken to determine the possibility of
using neural networks for basic real-time pathfinding and the pros and cons of the results.

1.1 The Need for Real-Time Pathfinding

Traditionally in computer games pathfinding is done on a static scaled down representation of the
virtual world that the game presents. This works fine if there is little or no change to the virtual world
throughout the course of the game. This was the case in most games up until now as the sophistication
of the game’s real-time physics engine was limited mainly due to the time required to develop it.
However games are now being built using middleware for key components of the game, including the
physics engine. Middleware is software written by an external source that has hooks that allow it to be
integrated into a game developer’s code. Therefore game developers can spend much more time
creating more immersible games with real-time dynamic scenes. This sounds exciting however it is
being impeded by traditional pathfinding AI that operates off a static representation of the games

virtual environment. This limits the amount of dynamic objects that can be added to games, as the
pathfinding strategy will have to be fine-tuned to handle them thus adding more time to the
development of the game.

To allow an AI agent to effectively navigate a dynamic world it would have to be given real-time
awareness of the environment surrounding it. To achieve this with traditional methods would require
running the pathfinding algorithm at every move, this would be computationally expensive, especially
for the limited memory available to the games consoles of today. Therefore the AI agent will have to be
given some kind of sensors that can obtain information about its surroundings. This is not difficult to
implement, however a key problem arises in making the agent decipher useful information from these
sensors and react accordingly in real-time without putting too much of a strain on the computers
resources. Artificial neural networks are a well known AI technique that provides a potential solution to
this problem.

1.2 Neural Networks for Real-Time Pathfinding

An artificial neural network is an information-processing system that has certain performance
characteristics in common with biological neural networks [Fausett94]. Each input into a neuron has a
weight value associated with it; these weights are the primary means of storage for neural networks.
Learning takes place by changing the value of the weights. The key point is that a trained Neural
Network (NN) has to ability to generalise on situations that it has never encountered [Champandard
04]. This is a particularly useful feature that should help considerably with dynamic scenes.

There are many different types of neural networks but the one particularly suited to real-time games is
the Feed Forward Neural Network (FFNN) due to the speed it can process data [Fausett 94]. Therefore
it was decided to investigate how well a FFNN could be trained to decipher the information presented
to it from sensors attached to an AI agent in a dynamic virtual world. These sensors will receive real-
time data from the physics engine therefore giving the agent a sense of awareness about its surrounding
environment.

The next stage was to come up with some system that will train the weights of the FFNN. If simple
rules are to be learned then it is possible to compile a set of inputs and their expected outputs and train
the FFNN through backpropagation. Otherwise reinforcement learning [Champandard 04] will be used
to evolve the FFNN’s weights through a genetic algorithm (GA) [Buckland 02]. This is achieved by
rewarding AI agents for following various rules that the user specifies at different time intervals. Then
the AI agents are ranked according to their respective scores with the top ranking agents putting a
mixture of their weights in to a lower ranking agent. This is analogous to nature’s survival of the fittest
model in the real world that has help humans evolve to where we are today.

1.3 Evolving the Weights of a Neural Network

Figure 1.1

The encoding of a neural network which is to be evolved by a genetic algorithm is very straightforward.
This is achieved by reading all the weights from its respective layers and storing them in an array. This
weight array represents the chromosome of the organism with each individual weight representing a
gene. During crossover the arrays for both parents are lined up side by side. Then depending on the
crossover method, the genetic algorithm chooses the respective parents weights to be passed on to the
offspring as shown in figure 1.1.

Training the neural network for basic real-time pathfinding first required it to learn to (i) head in
direction of goal and then to (ii) navigate around any obstacles that might litter the path. Therefore the
first step will be to see if the NN can learn these two tasks separately and then finally learn both of
them combined.

2 Test bed
The test bed for the experiment was a simple 2D environment (grid of square cells) in which the agents
can only move either up, down, left or right one cell from their present locations. There is a boundary
around the perimeter of the grid that has one of the following two properties solid boundary and a
wrap- around boundary. With the wrap-around boundary if the AI agent hits it they will be transported
to the opposite side of the grid while with the solid boundary the agent is stopped from moving. Objects
can also be added to the grid, which will permanently occupy their respective position in the grid thus
making it off limits to the agent. The test bed also allows real-time modification to the genetic
algorithms parameters so the user can observe the evolution in real-time and change these values due to
observations. Thus the test bed offers the NN a simple virtual environment to learn the two different

components of basic real-time pathfinding through reinforcement learning, which will be conducted
through a Genetic Algorithm (GA). This was done in terms of stages of increasing difficultly that
present an AI agent with different situations.

Figure 2.1

Grid Boundary

Real-time Control for
GA

Control Over NN Inputs

Figure 2.2

2.1 Stage One
This stage comprised of a Predator\Prey pursuit scenario with no obstacles as shown in Figure 2.2(a).
The relative position of the prey will be the input to the NN.

Neural Network Information

Inputs (2) Outputs (4)

Relative Position of Prey on X-axis UP

 DOWN

Relative Position of Prey on Y-axis LEFT

 RIGHT

The first thing that the NN was tested on was its ability to go towards a goal. The idea here is to have
predator that relentlessly pursues its prey abound an obstacle free space. Therefore the predator will
decide which way to move via a NN that takes the relative position of the prey as its input. The NN has
four outputs for each of the possible moves it can make. The output with the strongest signal will be
selected for the next move.

Num Inputs Hidden Layer Neurons Time(Sec) Generations Population Size

2 2 200 - 20

2 3 78 4167 20

2 4 50 1534 20

2 5 110 497 20

2 6 110 388 20

2 9 214 1253 20

Since the objective of the NN was very clear and simple it was possible to train in using
backpropagation and GA. This task was learned very quickly through backpropagation and GA but GA
had the benefit of creating less predictable solutions. This simple Predator/Prey demonstrated that the
NN had no trouble learning to head in the direction of a goal, which is the first requirement of real-time
pathfinding.

2.2 Stage Two
This stage comprised of a Predator\Prey pursuit scenario with small obstacles as shown in Figure
2.2(b). The inputs to the NN will be the Relative position and the contents of the four surrounding cells.

Neural Network Information

Inputs (6) Outputs (4)

Relative Position of Prey on X-axis UP

Relative Position of Prey on Y-axis DOWN

Cell Above LEFT

Cell Below

Cell Left RIGHT

Cell Right

This next stage aims to test if the predator can avoid obstacles that litter the path between it and the
prey. To achieve this the predators NN was given more inputs so as to inform it about its immediate
surrounding environment. To keep it simple the predator was given four sensors that indicated if the
next cell in each of the possible directions from its present location was obstructed.

The task was learned quickly through backpropagation and GA for obstacles up to two cells in size,
however with obstacles larger than two cells the Predator got stuck. This indicated that the predator did
not have enough time/information to avoid larger obstacles as it could only sense one cell ahead.
Therefore to possibly overcome this problem the predator would need longer-range sensors i.e. sensors
that scan greater than one cell in each direction.

2.3 Stage Three
This stage comprised of a Predator/Prey pursuit scenario with large obstacles as shown in Figure 2.2(c).
The inputs to the NN will be the relative position on the prey and with four directional sensors that can
look ahead more than one cell.

Neural Network Information

Inputs (6) Outputs (4)

Relative Position of Prey on X-axis UP

Relative Position of Prey on Y-axis DOWN

Sensor UP LEFT

Sensor DOWN

Sensor LEFT RIGHT

Sensor RIGHT

The Predators could not learn the two tasks combined with any real impressive results therefore the
search space needs to be reduced. One way of achieving this would be to use a hybrid neural network
which is more that one neural network being used to solve the problem. i.e. a NN could work out the
direction to travel towards goal and then input this into another NN that checks for obstacles.

2.4 Stage Four
This stage comprised of a Predator with four sensors that can look more than one cell ahead in each
direction for obstacle avoidance as shown in Figure 2.2(c).

Neural Network Information

Inputs (4) Outputs (4)

Sensor UP UP

Sensor DOWN DOWN

Sensor LEFT LEFT

Sensor RIGHT RIGHT

Since there are two parts to real-time pathfinding it was decided to investigate whether the NN could
learn to steer around large and small obstacles. Thus giving similar result to Renoylds steering
algorithms [Reynolds99]. This time the predators were only given long-range sensors as inputs to their
NN.

The Predators learned to steer away from obstacles large and small. Therefore if a NN can learn the two
requirements for basic real-time pathfinding separately it is a reasonable assumption that with a bit
more refinement into the training procedure that it can be trained to do both of them.

3 Future Work

Future work will evolve investigating the use of hybrid neural networks [Masters93] that will help
break up the problem into its two components thus reducing the search space for the full problem. Our
intention is then to expand the research into 3D games and benchmark the results against traditional
pathfinding strategies such as A* and Dijkstra [Graham04] with regard to speed, realistic movement
and ability to handle dynamic environments. The move to 3D should not be much more different for the
NN to handle as gravity constrains in most games will confine the agent to a 2D plane most of the time.
Another extension to this research is to look at a path-planning component that can guide the AI agent
by supplying it different goals to seek.

3.1 Conclusion
The two main problems associated with traditional pathfinding are they (i) rely on a static
representation of the virtual world and (ii) rigid unrealistic movement may be observed unless fine-
tuned in someway. This therefore hinders using the full power on offer from dynamic middleware

components. Since a neural network (NN) can learn the two main components required for a basic level
of real-time pathfinding separately with some more research into refining the training, it will be
possible for a NN to learn the two together. The NN should also be able to generalise on dynamic
situations that it did not encounter during training. This would offer the possibility of creating a
pathfinding Application Programming Interface (API) based on a neural network that will take inputs
from a games physics engine in real-time. Thus create the foundation of real-time pathfinding
middleware that would allow the next generation of computer games to immerse players into much
more unpredictable and challenging games.

References

[Buckland02] Buckland, Mat,. “AI Techniques for Game Programming”, Premier Press, 2002

[Champandard04] Chapandard, Alex J., “AI Game Development”, New Riders Publishing, 2004

[Fausett94] Fausett, Laurene, “Fundamentals of Neural Networks Architectures, Algorithms, and Applications”,
Prentice-Hall, Inc, 1994.

[Graham04] Graham, Ross., “Pathfinding in Computer Games”, in proceedings of ITB Journal, 2004

[Havok] www.havok.com

[Masters93] Masters, Timothy., “Practical Neural Network Recipes in C++”, Boston: Academic Press, 1993

[Renderware] www.renderware.com

[Reynolds99] Reynolds, C. W., “ Steering Behaviors For Autonomous Characters”, in the proceedings of Game
Developers Conference 1999 held in San Jose, California. Miller Freeman Game Group, San Francisco, California.
Pages 763-782

[RusselNorvig95] Russel, Stuart., Norvig, Peter., "Artificial Intelligence A Modern Approach", Prentice-Hall, Inc,
1995

