
Camera Control through Cinematography for Virtual
Environments: A State of the Art Report

James Kneafsey & Hugh McCabe

School of Informatics and Engineering, Institute of Technology, Blanchardstown, Dublin 15, Ireland.

james.kneafsey@itb.ie, hugh.mccabe@itb.ie

Abstract

Cinematography has evolved as a set of guidelines for filming motion pictures that ensures a standard is
adhered to and the events are presented in a coherent manner. Principles of cinematography can be
employed such that supplementary information is communicated when necessary and the viewer does not
become disoriented due to the camera work. We propose that these and other principles of cinematography
can be applied to virtual environments, in particular 3D computer games where disorientation of the user is
often an issue. This paper looks at what has already been implemented in the domain of camera control
through cinematography for virtual environments and outlines our future work.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Viewing
algorithms

1 Introduction

We propose to implement a camera control system for 3D
computer games that is informed by cinematography.
Cinematography provides film-makers with a language to
use when controlling the camera. Certain styles of camera
control can be used to convey supplementary information
regarding the action to the audience. We believe this power
of communication can be adapted for computer games.
Camera control for computer games may, therefore, evolve
from simple configurations to more elaborate ones and
perhaps evoke an emotional response from the user.

Three-dimensional computer games usually require the
user to move a character around a virtual world. The virtual
camera that films the action is often in a fixed position
relative to the character so that the user sees the
environment through its eyes or perhaps from behind and
above its head. As the user turns the character, the
viewpoint turns also. Camera angles like this represent only
a subset of the options available from cinematography (see
following section). A richer visual experience would be
granted to the user if more principles from cinematography
were considered in the design of the virtual camera.

Before considering camera control through
cinematography, camera control fundamentals must be
taken into account. Thus we examine a range of techniques
that attempt to solve a number of problems relating to
camera control in a virtual environment in this paper.
Although our focus is on 3D computer games, it is
important to consider camera control in other virtual
environments because the techniques employed are still
relevant. Fundamental techniques seek to simply position
and orient the camera within the virtual world to generate
still images. Others provide shots with a moving camera as
may be used for museum walkthroughs. More elaborate
approaches consider enabling the virtual camera to follow a
moving subject and solving common problems associated
with this task. Building on all of these methods are
approaches to camera control that are informed by
cinematography some of which attempt to invoke an
emotional response from the user.

The rest of this paper is structured as follows: Section 2
introduces the principles of cinematography relative to
camera control in a virtual environment, section 3 discusses
camera control fundamentals in a virtual environment,
section 4 outlines methods for controlling the virtual

camera through cinematography, and section 5 provides a
conclusion and outlines our future work.

2 Cinematography

Cinematography is defined as the art of film-making. It
encapsulates the techniques and principles that govern how
filming should be carried out for motion pictures. More
specifically, it provides guidelines for how the camera in
particular should be used in order to accomplish tasks such
as engaging the interest of the viewer, enhancing and
clarifying the narrative, and presenting the content in an
interesting and coherent manner. For a full treatment of this
subject we direct the reader to classic texts such as [Mas65]
and [Bro02]. For the purposes of this paper we will simply
outline some basic principles relevant to camera control in
a virtual environment.

A motion picture is broken down into sequences of
scenes each of which is a single setting where action takes
place during a particular time period. Each scene is
composed of a number of shots, a shot being a continuous
view filmed by one camera without interruption. The
transition from one shot to the next is known as a cut.
During a shot the camera may be stationary or it may use
simple or more complex movements depending on the
content of the scene and the mood that is to be established.
Cinematography provides guidelines for deciding how to
position and move the camera.

The type of camera angle used dictates how much the
camera, and therefore the viewer, becomes part of the
action. Camera angles that are closer to and move with the
action are more subjective; angles that are more detached
and seem to move independently of the action are more
objective. The most subjective angle is achieved when the
camera takes the place of one of the characters in the scene.
The viewer now sees through the character’s eyes as they
move around the scene.

Common types of shots used in cinema are the long shot,
which depicts the main characters and the setting, medium
shot, which depicts characters from the thighs to above the
head, and close-up, which depicts them from the chest to
above the head. A long shot establishes the layout of a
setting, a medium shot may be used to introduce the main
characters and a close-up isolates and adds dramatic
emphasis to a particular event.

There are a number of different types of camera
movements, all of which must be executed such that the
viewer does not become disoriented. Two of the main ones
are tracking and panning. Tracking is when the camera
moves alongside a character while filming them and
panning is when it rotates on its vertical axis. Tracking can
give the viewer the impression that they are walking
alongside a character; panning is often used to take in the
expanse of a setting.

Figure 1: The action axis: If the subject is filmed with
camera A, subsequent shots must keep to this side of the
action axis dictated by the subject's motion. Therefore
position B is valid while C is not.

To ensure that the action is presented in a continuous way
the action axis (figure 1), also called the line-of-interest, is
used. This is a line, or in a 3D environment, a vertical
plane, dictated by the action being performed. If two actors
are talking the line will be drawn between them; if one
actor is walking the line will be drawn in the direction of
their motion. In order to keep the viewer oriented, the
camera must keep to one side of the action axis from one
shot to the next. It may move across the action axis during
a shot but once there is a cut to the next shot it must be
positioned on the same side as before the cut.

3 Camera Control Fundamentals

Virtual cameras share many of the characteristics of their
real-world counterparts and much of the basic positioning
and movement of the camera required by cinematography
can be implemented for virtual cameras also. Automating
these tasks does introduce some problems however and in
this section we will identify these problems and look at
how they can be solved.

3.1 Still Shots

The simplest type of shot is a still shot, meaning that the
camera is fixed in position and orientation, usually pointing
at some subject. The position and orientation of the camera
is controlled by a set of parameters. These can be expressed
as a lookFrom vector which defines the camera’s position,
a lookAt vector which defines the location the camera is
pointing at, and an up vector which defines the camera’s
vertical axis. In addition to these parameters there is a
field-of-view parameter. The field-of-view of a camera is
the region of the visual field that is filmed. The greater the
field-of-view the greater the proportion of the setting that is
included and the more it seems that objects are farther
away from each other.

These parameters are sufficient to set the camera’s
position, location and field-of-view but for a camera system
to determine them automatically some factors must be
taken into account. The system should avoid situations
where the required view is partially or wholly occluded by

some scene geometry. This can be accounted for by casting
a ray from the camera to the subject that is to be filmed and
testing for intersections with scene geometry along the way
[TZY04, TBN00]. If an intersection does occur measures
may be taken to find a new placement.

We are usually left with a large number of possible
occlusion-free viewpoints to choose from so some authors
have addressed the problem of how to select optimal ones.
Halper et al. [HO00] use a genetic algorithm to
automatically generate the optimal camera placement
within a virtual environment given some requirements by
the user. The user defines shot properties, i.e. requirements
on how scene elements are to appear in the view, and
tolerances on those shot properties. The tolerances are used
to ascertain which ones are more important in calculating
the view. The user can dictate, for example, that a scene
element is located between two points in the viewport (the
rectangular area onto which the scene is projected) or that
only a certain proportion of it is visible. The required
properties of scene elements can also be defined relative to
those of other scene elements as they appear in the view.
For example, a requirement may be made that one scene
element appears twice as large as another or to the left of
another. A genetic algorithm will attempt to find a camera
placement that conforms to the requirements.

Genetic algorithms are a branch of artificial intelligence
that uses concepts from the Theory of Evolution to find an
optimal solution to a problem given an initial state. The
seven elements of the camera state vector, that is the three
elements of its position vector, the three elements of its
orientation vector and its field-of-view, are encoded in the
chromosomes of a number of genes. These are randomly
distributed in a bounded search space. A combination of
selection by fitness value (i.e. how well the views conform
to the shot properties imposed by the user) and random
regeneration evolves the population. This means that the
most appropriate views survive into the next generation
and the others are regenerated. The process continues until
the user aborts or the optimal view is found.

3.2 Moving Camera without Subject

A camera that moves through a virtual environment,
providing the user with a changing view is applicable to
situations such as virtual museum walkthroughs. The user
supplies a goal destination for the camera to travel to and it
travels along a path to that destination. Problems that
should be anticipated are occlusion of the view and
collisions with scene geometry. Occlusion of the view may
occur if the camera becomes positioned so close to some
scene geometry (some foliage perhaps) that it takes up most
of the view. The camera system may cast a ray, as outlined
in the previous section, to account for occlusion. Once a
clear view is found the system may switch to using a
bounding volume to avoid future occlusions. At each cycle
it can test whether the bounding volume intersects any
scene geometry and find a new placement if it does
[MC00].

Nieuwenhuisen & Overmars [NO03] address the problem
of generating an occlusion-free path through a virtual

environment using the probabilistic roadmap method.
Given a goal position the system generates a path between
the current location and the goal and the camera follows
that path. Their method is suitable for architectural
walkthroughs.

In order for the system to find a suitable path in a
reasonable amount of time a probabilistic roadmap is
created in a pre-processing stage. The roadmap is made up
of a number of nodes where each node represents a valid
location in the virtual world and edges between nodes
represent valid paths. When the camera travels from one
location to another there must be sufficient clearance from
objects in the scene so there are no collisions or near
collisions. Nodes in the roadmap therefore correspond to
spheres in the virtual world and edges to cylinders of the
same radius. This radius defines the clearance. Nodes and
cylinders are only added to the roadmap if they do not
intersect with any objects.

To generate a path from a starting point to a goal position
in the scene, two nodes are created for both locations and a
search algorithm finds the shortest path. A penalty function
discourages paths that are too long or have sharp corners.
After this the path is made smooth by applying circular
blends to any corners that are left. When the camera travels
along the path it will need to slow down at bends in the
path and speed up for straight sections so a speed function
analyses the path and returns a speed diagram for the
optimal speed for each point on the path. The camera’s
orientation is set so that it looks at the location where it
will be a unit of time in the future (usually one second)
rather than always looking along the direction of the path.
This has the effect that as it moves into a bend it will look
further along the bend which gives the user better
orientation.

3.3 Camera Following Moving Subject

When a user moves an avatar around a virtual
environment the camera usually follows its movements.
There are different models for filming the scene relative to
a moving subject depending on whether or not the subject
is in the view and whether or not the camera is fixed in
position relative to the subject [Bro02].

 First-person perspective: The camera films
subjectively so the user sees what the avatar “sees”.
Thus the user will not see the avatar in the view
except for its hands perhaps. This model for filming is
easier to implement than the ones discussed below.

 Third-person perspective over-the-shoulder camera:
The camera is positioned above and behind the
avatar’s head. The avatar appears towards the bottom
of the screen in the user’s view of the scene. This
configuration is more difficult to realise than the first-
person camera because a clear view of the scene is
required while keeping the avatar in view.

 Autonomous camera: The camera continually tries to
find the best angle based on the activity the avatar is

engaged in: it might be exploring the scene, having a
conversation or perhaps picking up an object. To
depict the relative parts of the scene for each activity,
the camera system must be informed about the objects
in the scene and the activities being performed.

One way of implementing a camera that automatically
follows a subject in a virtual environment is with
constraints [HHS01, AK01, TZY04]. Constraints such as
that on a specified height, distance or orientation relative to
the subject can be imposed on the camera and as the
subject moves around the scene it will conform to the
specified constraints.

A first-person camera is trivial to implement and less
problems in presenting a suitable view arise. The over-the-
shoulder and autonomous views must be continually
analysed, however, so that a minimum standard of camera
work and the requirements imposed by the designer are
adhered to. A significant issue to account for is occlusion
of the view [CAH*96, HHS01, TZY04, TBN00]. This can
occur due to the combined motions of the avatar and the
camera. Sometimes the avatar itself may fill the entire
screen and occlude most of the scene. It is important to
define how much occlusion acceptable relative to the avatar
and to the view of the scene. It may be the case that no
occlusion of the avatar is permitted but a small amount of
the scene is allowed. Another issue to consider is the
movement of the camera through scene geometry. This has
the ugly effect of allowing the user to see through walls
and depending on the implementation some occlusion may
occur also. With the over-the-shoulder and autonomous
cameras rather than the first-person camera, it is important
that the viewpoint moves smoothly as it follows the avatar
around the scene [CAH*96, HHS01, TZY04]; otherwise
the user may become disoriented and the visual experience
spoiled. Measures can be added to make the camera’s
movements more flexible relative to those of the avatar so
that even if the user directs the avatar in an erratic way the
camera will move smoothly.

4 Camera Control through Cinematography

As already mentioned our focus within the area of virtual
environments is on 3D computer games. In order to adapt
the principles of cinematography for computer games a
major issue must be addressed: Computer games are
interactive but motion pictures are not. In terms of filming
the action, the director of a motion picture is at liberty to
reposition actors, rearrange the scene and to film multiple
takes until the required shot is achieved. In computer
games these options are not available and so the filming of
a game may be more comparable to that of a documentary
or sporting events since in these situations the camera
operator must attempt to predict the action in real-time.
This leads to a reduction in the number of principles from
cinematography that can be employed but this is acceptable
considering the lack of determinism in how the action will
play out.

To implement a camera control system that is informed
by cinematographic principles two main issues must be
resolved. Firstly, the camera system must know the layout

of the scene, the principal characters in the scene and any
important objects in the scene. Secondly, the principles
must be encoded in the system so it can shoot the scene in a
suitable way. One way of encoding them is as film idioms.
These are standard ways to shoot common scenes, e.g. a
scene of two people having a conversation. One way of
acquiring information about state of the scene is directly
from the real-time application at regular intervals. A finite
state machine may be used to decide what idioms to use.
Idioms usually consist of a number of shots where a shot
may be something simple like a pan or a track. Low level
camera positioning and orientation for each shot is often
achieved with constraints.

Christianson et al. [CAH*96] use film idioms in an off-
line method to adapt cinematography for portraying 3D
animations. They formalise film idioms with their
Declarative Camera Control Language (DCCL). Each
idiom contains a number of shots for filming each type of
scene. Shots are further decomposed into fragments, where
a fragment represents a simple camera movement (e.g. a
pan or a track) or a static camera. An animation trace
representing action that has already occurred and a number
of film sequences are supplied to the camera system. The
film sequences indicate which actors to film over each time
period. The animation trace is broken down into scenes and
the relevant idiom applied to each scene. Suitable idioms
must maintain smooth camera movements and not cross the
line-of-interest. Fragments that are too short or in which
the camera pans backwards will be discarded. Although
idioms are a suitable way of encoding principles of
cinematography this particular approach is unsuitable for
3D computer games since it is not real-time.

Ting-Chieh et al. [TZY04] use a similar approach for
Cinematographic Camera Control for Computer Games.
They employ various principles of cinematography such as
the action axis and establishing shots for shooting action in
their real-time computer game system. The real-time
application informs the cinematic camera control system
about actor’s positions, orientation, equipment and
activities and about user input. Cinematographic camera
control methods are encoded in camera modules and
descriptions of shots. Descriptions of shots, which would
be equivalent to Christianson’s idioms [CAH*96], are
arranged in a hierarchy with more general descriptions
closer to the root. For example, one of the first-level nodes
in the hierarchy is a shot description for a conversation. Its
children nodes at the next level are two talk and three talk
for two-person and three-person conversations respectively.
Each shot description is modelled as a finite state machine
(FSM) with each state in the FSM representing a camera
module. Camera modules encode the information for
filming individual shots. Specific events will trigger a
transition between states in the FSM and therefore a cut to
a new shot.

Low-level camera control is implemented through
constraints. The available constraints are:

 Level at: The height of the camera relative to the
subject.

 Angle to line-of-action: The camera’s orientation
relative to the line-of-action.

 Facing: The camera’s orientation relative to the
direction a character is facing.

 Size: The apparent size of the subject in the view. This
is dependent on the actual size of the subject, its
distance to the camera and the camera’s field-of-view.

 Height angle: The angle above or below the subject to
film from.

 View at angle: The position of the subject relative to
the screen (towards the left, top etc.).

 Visibility: The visibility of the subject.

Discontinuity of motion is dealt with by ensuring frame
coherence, i.e. the smoothness of transitions between shots.
This means that rather than adhering rigidly to each
constraint which may result in erratic movements, the
camera configuration changes gradually producing a more
pleasing view. Any jump cuts (cuts to positions or angles
that are so similar to the previous ones that it looks like a
mistake has occurred) will be converted to a gradual
change in the camera specification such as a smooth
movement to the new location. It is also ensured that the
camera does not cross the line-of-action. Occlusions are
prevented by testing if a cylinder drawn between the
camera and subject intersects with scene geometry and if it
does moving the camera back along the way it came.

Idioms are also used in The Virtual Cinematographer
[HCS96], a camera control system for a real-time virtual
party setting. The virtual cinematographer (the camera
control system in this case) gains information about the
state of the scene directly from the real-time application in
order to choose what idioms to use. Each idiom consists of
a number of camera modules, where a camera module
represents a simple camera placement or movement. The
virtual cinematographer may require subtle repositioning of
actors before the scene is rendered. Some of the principle
modules are:

 Apex: A shot of two actors on opposite sides of the
screen with each centralised on their side of the
screen.

 Close apex: Similar to an apex but the actors are
framed in close-ups. They may be repositioned to be
framed this way.

 External: A shot of one character over the shoulder of
another.

 Internal: The same line of sight as the external camera
module but with the camera positioned closer so that
the second character is off-screen and the first
character appears larger.

 Ext1to2: A shot of two characters over the shoulder of
a third. Characters may be repositioned if necessary to
achieve the required framing.

 Track/pan/follow: Tracking and panning shots as
described in section 2. A follow shot is a combination
of a pan and a track. The camera first pans to follow
the subject as they pass by and then tracks to follow
them from behind.

 Fixed: A fixed camera.

Transitions from one shot to another are again facilitated
by encoding the camera modules in each idiom in a finite
state machine. Specific events lead to a transition to a
different state and therefore a different camera placement.
The camera modules enforce adherence to the line-of-
interest and detect occlusion. The idioms can change to a
different shot if occlusion occurs. The Virtual
Cinematographer would be unsuitable for current 3D
computer game systems because the requirement that
characters be repositioned for certain shots could
compromise the precision of such a real-time application.

Cognitive modelling can be used to tell the camera
control system about the state of the virtual world and how
to film the action. Funge [Fun99] uses a cognitive
modelling language (CML) for this purpose. The world is
modelled as a sequence of situations, i.e. snapshots of the
state of the world and any property of the world that may
change over time is known as a fluent. The fluent Talking
(A,B), for example, is true whenever characters A and B are
having a conversation. The user may impose restrictions on
what actions are carried out given the state of the scene. In
the case of the fluent Talking(A,B) the camera controller
can only film an external shot (over-the-shoulder shot) of
character A if already filming A and it has not becoming
boring yet or if not filming A, A is talking and the current
shot has lasted for long enough. The user must also specify
the results of actions, such as a new position in the world
being taken up by the camera. The action external(A,B)
results in the camera being directed at character A and
being located above the shoulder of character B.

The required camera behaviour is encoded as complex
actions written in CML by the user. A complex action is
one constructed of other actions by using regular
programming constructs, such as loops. A complex action
can be written to direct a camera controller in shooting a
conversation:

setCount;

while(0<silenceCount){

pick(A,B)external(A,B);

tick;

}

This directs the camera controller to pick a new external
shot (over-the-shoulder shot) of either character A or B
when a certain amount of time has elapsed.

One of the principal aims of cinematography is to
communicate the emotional state of characters in the scene.
Tomlinson et al. [TBN00] attempt to achieve this with their
automatic cinematography system for interactive virtual
environments. The camera control mechanism in this case
is their CameraCreature, an artificially intelligent entity,
which also positions lights in the scene. The virtual
environment is populated with artificially intelligent
characters, each one of which is modelled as a creature
with a behaviour system. The CameraCreature can read the
emotions of the characters in order to determine its own
emotional state. This in turn determines the style of filming
used. For example, a happy camera may cut more
frequently and use oscillating movements whereas a sad
camera may use long swooping movements. The camera’s
movements are based on a dynamical system of springs and
dampers the settings of which can be altered to establish
different styles of motion.

Motivations also influence filming but in a more localised
way. The CameraCreature has motivations, such as,
DesireForTwoShot which makes it look for two characters
having a conversation to film. Characters in the scene also
have motivations, such as, DesireForCloseUp. In this way
they can request specific shots from the CameraCreature.
Lighting is used to imply different emotional states in the
scene. There is interplay between the camera, global lights
and personal lights. For example, when the camera moves
in for a close-up the global lights dim and the personal
light of the character, which moves with them, brightens.
Occlusion detection is carried out by casting a ray from the
camera to the subject. In one implementation the camera
moves up until the line of sight is clear. Although it would
be desirable to represent the emotional state of characters
in a 3D computer game by using cinematography this
information is not present in current computer game
systems.

Amerson and Kime [AK01] use idioms to present real-
time interactive narratives in virtual worlds. Idioms are
encoded in a data structure called a scene tree. At the root
of the tree is a generic type of idiom; idioms become more
specific towards the leaves of the tree. During the
interactive narrative the suitable idiom is determined by
performing a search on the scene tree. The idioms are
encoded using Amerson and Kime’s FILM (Film idiom
language and model) system. Each idiom contains a
number of shots where each shot represents a simple
camera movement, e.g. tracking. Shots contain a list of
constraints to be adhered to in order to film the shots and
each constraint has a weight associated with it to define its
importance to the shot.

E.g. lensType(NORMAL_LENS) WEIGHT=.9

This defines a constraint on using a normal lens to have
an importance of 90%. Some of the other constraints used
in the FILM system are:

 lookAt: A constraint on the object the camera is to
film.

 relativeLocation: The location of the camera relative
to an object.

 maintainLensType: To maintain the lens type used in
the previous shot.

 maintainRotation: To maintain the orientation from
the previous shot.

 maintainAbsoluteLocation: To maintain the camera’s
absolute position.

The optimal camera placement is chosen based on the
constraints defined in the idiom. If a suitable placement
cannot be found due to occlusion of the view or a conflict
between constraints, those with weaker weights can be
relaxed. An ad hoc approach to relaxing constraints is used
in which predefined procedures adjust camera parameters.

Principles of cinematography such as the line-of-interest
are employed in A Camera Engine for Computer Games
[HHS01]. In this approach the balance between constraint
satisfaction and frame coherence is addressed as a key
issue. Different types of shots are encoded as shot
templates. Shot templates are selected for application to the
camera in real-time. Again, constraints are the basis for low
level camera control. The constraints used are:

 Level at: The height of the camera relative to the
subject.

 Angle to line-of-interest: The angle to film the subject
at relative to the line-of-interest.

 Facing: The side of the subject to film.

 Size: The apparent size of the subject.

 Height angle: The angle with which the camera looks
up to or down at the subject.

 View at angle: The position of the subject relative to
the screen (towards the left, top etc.).

 Visibility: Simply that the subject is visible on the
screen.

The balance between constraint satisfaction and frame
coherence is achieved by relaxing constraints that have
weaker weights when necessary.

5 Conclusion

It can be concluded that there are a range of techniques
for both encapsulating cinematography in a camera system
for virtual environments and acquiring data on the state of
the scene. In this way suitable shots can be applied as the

events in an environment unfold. One of the main issues
that must be addressed, however, is the fact that computer
games are both interactive and occur in real-time. The
number of principles of cinematography used will therefore
be reduced and their application must be adapted for a real-
time scenario.

One requirement discussed that could not be applied to a
computer games is the repositioning of characters because
this could compromise the accuracy of the real-time action.
The ability to portray the emotions of the characters in a
game would greatly enhance the visual experience but this
information would have to be added to the computer game
system. At most it might be possible to guess the emotional
state of characters due to the events that are occurring.

Our future work will include:

 Identifying a number of key scenarios in 3D computer
games and adapting principles and techniques from
cinematography in order to develop an automatic
camera control system suitable for filming such
scenarios.

 Testing a number of approaches, including our own,
to camera control through cinematography on these
typical scenarios and comparing them with the
knowledge of domain experts, i.e. cinematographers.

 Evaluating our implementation from the point-of-view
of playability, i.e. the user’s ability to carry out the
task required by the game with a cinematographic
camera.

References

[AK01] Amerson, D. & Kime, S. (2001). Real-Time
Cinematic Camera Control for Interactive
Narratives. In The Working Notes of the AAAI
Spring Symposium on Artificial Intelligence and
Interactive Entertainment, Stanford, CA.

 [Bro02] Brown, B. (2002). Cinematography: Image
Making for Cinematographers, Directors and
Videographers. Oxford: Focal.

[CAH*96]Christianson, D. B., Anderson, S. E., He, L.,
Salesin, D. H., Weld, D. S. & Cohen, M. F.
(1996). Declarative Camera Control for
Automatic Cinematography. In Proceedings of
the Thirteenth National Conference on Artificial
Intelligence, 148-155.

[Fun99] Funge, J. (1999). Cognitive modeling for
computer games. AAAI Spring Symposium on
Artificial Intelligence and Computer Games,
Stanford University.

[HO00] Halper, N. & Olivier, P. (2000). CAMPLAN: A
Camera Planning Agent. In Smart Graphics:
Papers from the 2000 AAAI Symposium, 92-100.

[HHS01] Halper, N., Helbing, R. & Strothotte, T. (2001).
A Camera Engine for Computer Games:
Managing the Trade-Off Between Constraint
Satisfaction and Frame Coherence. In
Proceedings of Eurographics, 174–183.

[HCS96] He, L., Cohen, M. F. & Salesin, D. H. (1996).
The Virtual Cinematographer: A Paradigm for
Real-time Camera Control and Directing. In
Proceedings of SIGGRAPH 1996.

[MC00] Marchand, E. & Courty, N. (2000). Image-Based
Virtual Camera Motion Strategies. In
Proceedings of the Graphics Interface
Conference.

[Mas65] Mascelli, J. V. (1965). The Five C’s of
Cinematography. Los Angeles: Silman-James
Press.

[NO03] Nieuwenhuisen, D. & Overmars, M. H. (2003).
Motion Planning for Camera Movements in
Virtual Environments.

[TZY04] Ting-Chieh, L., Zen-Chung, S. & Yu-Ting, T.
(2004). Cinematic Camera Control in 3D
Computer Games. In Proceedings WSCG 2004.

[TBN00] Tomlinson, B., Blumberg, B. & Nain, D. (2000).
Expressive Autonomous Cinematography for
Interactive Virtual Environments. In Proceedings
of the Fourth International Conference on
Autonomous Agents, 317-324.

