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Abstract 

Many 3D graphics applications require the presence of autonomous computer-controlled agents which are 

capable of navigating their way around a virtual 3D world. Computer games are an obvious example of this. 

One of the greatest challenges in the design of realistic Artificial Intelligence (AI) in computer games is 

agent movement. Pathfinding strategies are usually employed as the core of any AI movement system. The 

two main components for basic real-time pathfinding are (i) travelling towards a specified goal and (ii) 

avoiding dynamic and static obstacles that may litter the path to this goal. The focus of this paper is how 

machine learning techniques, such as Artificial Neural Networks and Genetic Algorithms, can be used to 

enhance an AI agent’s ability to handle pathfinding in real-time by giving them an awareness of the virtual 

world around them through sensors. Thus the agents should be able to react in real-time to any dynamic 

changes that may occur in the game. 

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Navigation 

algorithms 

 

 

1 Introduction 

Agent movement is one of the greatest challenges in the 

design of realistic Artificial Intelligence (AI) in computer 

games. This challenge is compounded in modern games 

that are becoming more dynamic in nature as a result of 

middleware engines such as Renderware [Rend] and Havok 

[Havok]. These middleware companies allow game 

developers to spend more time developing interesting 

dynamic games because they remove the need to build 

custom physics engines for each game. But these new 

dynamic games create a strain on existing pathfinding 

strategies as these strategies rely on a static representation 

of the virtual world of the game. Therefore, since the 

games environment can change in real-time, the 

pathfinding strategy also has to occur in real-time. The two 

components for basic real-time pathfinding are (i) heading 

in the direction of a goal and (ii) avoiding any static and 

dynamic obstacles that may litter the path to that goal in 

real-time. 

This paper will highlight the need for real-time 

pathfinding and how effectively a neural network can learn 

this initially at a basic level. It will then discuss a test bed 

system, currently in development, that incorporates 

machine learning techniques into a 3D game engine. 

Finally the steps taken to determine the possibility of using 

neural networks for basic real-time pathfinding and the 

result of these steps will be discussed. The game engine 

chosen for our test bed was the Quake 2 engine developed 

by id software [Id]. 

1.1 The Need for Real-Time Pathfinding 

Traditionally in computer games, pathfinding is done on a 

static scaled down representation of the virtual world that 

the game presents [Gra03]. This works fine if there is little 

or no change to the virtual world throughout the course of 

the game. This was the case in most games up until now as 

the sophistication of the game’s real-time physics engine 

was limited mainly due to the time required to develop it. 

However games are now being built using middleware for 

key components of the game, including the physics engine. 

Middleware is software written by an external source that 

has hooks that allow it to be integrated into a game 

developer’s code. Therefore game developers can spend 

much more time creating more immersible games with 

real-time dynamic scenes. This sounds exciting however it 

is being impeded by traditional pathfinding AI that operates 

off a static representation of the games virtual environment. 

This limits the amount of dynamic objects that can be 

added to games, as the pathfinding strategy will have to be 

fine-tuned to handle them thus adding more time to the 

development of the game. 

To allow an AI agent to effectively navigate a dynamic 

world it would have to be given real-time awareness of the 

environment surrounding it. To achieve this with traditional 

methods would require running the pathfinding algorithm 

at every move, and this would be computationally 

expensive, especially for the limited memory available to 

the games consoles of today. Therefore the AI agent will 

have to be given some kind of sensors that can obtain 

information about its surroundings. This is not difficult to 

implement, however a key problem arises in making the 

agent decipher useful information from these sensors and 

react accordingly in real-time without putting too much of a 

strain on the computers resources. Artificial neural 

networks are a well known AI technique that provides a 

potential solution to this problem. 
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1.2 Neural Networks for Real-Time Pathfinding  

An artificial neural network is an information-processing 

system that has certain performance characteristics in 

common with biological neural networks [Fau94]. Each 

input into a neuron has a weight value associated with it; 

these weights are the primary means of storage for neural 

networks. Learning takes place by changing the value of 

the weights. The key point is that a trained Neural Network 

(NN) has to ability to generalise on situations that it has 

never encountered [Cha04]. This is a particularly useful 

feature that should help considerably with dynamic scenes. 

There has been research in the robotics field with regard 

to using NN’s for real-time pathfinding [Gla95,Leb03, 

Leb05]. These approaches typically involve representing 

the entire map with a 2D mesh of connected neurons. This 

requires a pre-processing phase to set up a neural mesh 

representation of a map. However, once created, the mesh 

can handle dynamic changes.  The problem is that it would 

require too many neurons to represent a typical game 

environment. This problem is compounded by the fact that 

each AI agent would require its own separate neural mesh.   

There are many different types of neural networks but the 

one particularly suited to real-time games is the Feed 

Forward Neural Network (FFNN) due to the speed it can 

process data [Fau94]. Therefore it was decided to 

investigate how well a FFNN could be trained to decipher 

the information presented to it from sensors attached to an 

AI agent in a dynamic virtual world. These sensors will 

receive real-time data from the physics engine therefore 

giving the agent a sense of awareness about its surrounding 

environment. 
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Figure 1.1 

The definitive measure of success in real-time games is 

the frames per second (FPS) rate. For a real-time game 

frame rates below 25 - 30 FPS are generally deemed 

unacceptable. As shown in figure 1.1 our system can have 

well over two hundred thousand neurons active in the 

Quake 2 engine at 30 FPS.  This translates, depending on 

how many neurons a NN is composed of, to thousands of 

AI agents being able to use a trained NN at the same time. 

 

1.3 Evolving the Weights of a Neural Network 

 

Figure 1.2 

 

The encoding of a neural network which is to be evolved 

by a genetic algorithm is very straightforward. This is 

achieved by reading all the weights from its respective 

layers and storing them in an array. This weight array 

represents the chromosome of the organism with each 

individual weight representing a gene. During crossover, 

the arrays for both parents are lined up side by side. Then 

depending on the crossover method, the genetic algorithm 

chooses the respective parents weights to be passed on to 

the offspring as shown in figure 1.2. 

Training the neural network for basic real-time 

pathfinding first required it to learn to (i) head in direction 

of goal and then to (ii) navigate around any obstacles that 

might litter the path. Therefore the first step will be to see if 

the NN can learn these two tasks separately and then finally 

learn both of them combined. 

2 Training 

Reinforcement learning [Cha04] [Rus95] is used to 

evolve the NN’s weights through a genetic algorithm (GA) 

[Buc02]. This is achieved by rewarding AI agents for 

following various rules that the user specifies at different 

time intervals. Then the AI agents are then ranked 

according to their respective scores, with the top ranking 

agents putting a mixture of their weights into a lower 

ranking agent. This is analogous to the evolutionary 

survival of the fittest model. 

2.1 Implementation 

The NN and the GA were implemented in C++ and 

compiled into a standalone library named the AI Library. 

The AI Library gives any program linking to it access to 

NN, GA and traditional pathfinding functionality through 

high-level commands. Therefore to train the AI agents 

within the Quake2 engine the AI Library was linked to the 

engine’s source code. Once linked a number of graphical 

user interfaces (GUI) were implemented that allow the user 

to integrate a NN into the AI agents and evolve them 

through a GA. 
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2.1.1 GA Options GUI 

The user is given real-time control over all the GA 

parameters thus giving the user huge scope to dynamically 

change each of them throughout a simulation. These 

parameters are the selection function, the crossover 

function, mutation probability, evolution time and all the 

elements concerned with the rank function. This facilitates 

evolution in stages of difficulty, by introducing more 

elements as the AI agent learns previous ones, thus 

gradually evolving to a more complex behaviour. 

2.1.2 NN Options GUI 

The NN options GUI allows the user real-time control 

over the inputs to each AI agents NN and its activation 

function. It also offers the user the facility to bias certain 

inputs thus decreasing the search space for the NN initially, 

and then gradually removing the bias values at later stages 

of the evolution thus gradually increasing the search space. 

This again facilitates evolution through different stages of 

difficulty. A set of custom maps were also created to 

facilitate training the AI agents to learn the basic 

components of real-time pathfinding. 

3 Results 

The first thing that the NN was tested on was its ability to 

go towards a goal. The idea here is to have an AI agent 

relentlessly pursues a dynamic object around an obstacle 

free space. Therefore the agent will decide which way to 

move via a NN that takes the relative position of the goal as 

its input. The NN has three outputs which are turn left, 

move forward and turn right respectively. The output with 

the strongest signal will be selected for the next move. This 

was learned with ease by the AI agents by scoring them for 

moving towards the goal. An interesting result however is 

the variety in the solutions the GA produces. This is shown 

in figure 3.1 where three AI agents x and y coordinates 

were recorded as they moved from the same initial position 

to the same goal. 

 

 

Figure 3.1 

The next test was to supply the AI agents with sensors 

and insert them into a map with obstacles and evolve them 

to use the sensor information to steer around obstacles. 

Once again the NN had no trouble learning this behaviour 

once scored on valid moves and turning in the correct 

direction once the sensors detected an obstacle. This time 

the inputs were the sensors and the output was the same as 

before. 

The next test was to see if a NN could learn to head in the 

direction of a goal and avoid obstacles that may litter the 

path. The AI agent also has no prior knowledge of the map 

and reacts purely on what it senses in real-time. The inputs 

provided to the NN were relative position to the goal and 

the data received from each of the sensors. This proved to 

be very difficult for the NN to learn so much so that a 

complete rethink on the training procedures had to be done. 

It was also evident that a NN with one hidden layer was not 

capable to learning this behaviour. Another major change 

that was integrated into the system was the ability to run 

the simulation in discreet intervals. This meant at the end of 

each interval the agents were reset to their original position 

and orientation. 

 

 

Figure 3.2 

This spawned a series of new custom maps which we call 

the bot boot camps. These maps contain sets of parallel 

obstacle courses, each of which takes a single AI agent for 

discreet evolution. Figure 3.2 shows an outline of one of 

the custom bot boot camp maps. Each bot starts at the left 

side of the map (S) and has to make its way to the goal on 

the right (G).   This finally produced AI agents that would 

head towards a goal and avoid obstacles on the way. 

 

 

Figure 3.3 
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As shown in figure 3.3 the path the AI agent takes is not 

the smoothest of paths but illustrates that the agent has 

learned to head towards the goal position and avoid 

obstacles on route with no prior knowledge of the map. 

3.1 Conclusion 

While NN’s seemed an obvious choice for our 

implementation of real-time pathfinding, due to their speed 

at deciphering real-time data and there ability to generalise, 

they proved very difficult to train. However, the results that 

have been achieved so far demonstrate that NN can learn 

the basic components of real-time pathfinding. This is an 

exciting prospect as it could become the base of a real-time 

pathfinding Application Programming Interface (API) that 

could be used by game developers for low level pathfinding 

in a dynamic game map. The only element the game engine 

would have to provide would be a ray casting function 

which is a basic component of any physics engine. 

4 Future Work 

 

 

Figure 4.1 

Future work will involve refining the training procedures 

further so as to obtain even better results. We will also 

investigate how the use of hybrid neural networks [Mas93] 

might compliment our results. These would be capable of 

breaking up the problem into its two components thus 

reducing the search space for the full problem. Since there 

will constantly be situations where a higher planning 

algorithm will be needed to guide the AI agent in complex 

maps, we will investigate the concept of using a trained NN 

to cut down the number of waypoints required to represent 

these game maps. Figure 4.1 illustrates how the simple map 

requires four waypoints to represent it. Whereas by using a 

trained NN with sensors the map can be represented by two 

waypoints with the added benefit of being able to avoid any 

obstacle that may litter the map during runtime. 
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