
Sixth Irish Workshop on Computer Graphics (2005)

Eurographics Irish Chapter

© The Eurographics Association 2005.

Neural Pathways for Real-Time Dynamic Computer Games
R. Graham, H. McCabe, S. Sheridan

School of Informatics and Engineering, Institute of Technology at Blanchardstown, Dublin 15

Abstract

Many 3D graphics applications require the presence of autonomous computer-controlled agents which are

capable of navigating their way around a virtual 3D world. Computer games are an obvious example of this.

One of the greatest challenges in the design of realistic Artificial Intelligence (AI) in computer games is

agent movement. Pathfinding strategies are usually employed as the core of any AI movement system. The

two main components for basic real-time pathfinding are (i) travelling towards a specified goal and (ii)

avoiding dynamic and static obstacles that may litter the path to this goal. The focus of this paper is how

machine learning techniques, such as Artificial Neural Networks and Genetic Algorithms, can be used to

enhance an AI agent’s ability to handle pathfinding in real-time by giving them an awareness of the virtual

world around them through sensors. Thus the agents should be able to react in real-time to any dynamic

changes that may occur in the game.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Navigation

algorithms

1 Introduction

Agent movement is one of the greatest challenges in the

design of realistic Artificial Intelligence (AI) in computer

games. This challenge is compounded in modern games

that are becoming more dynamic in nature as a result of

middleware engines such as Renderware [Rend] and Havok

[Havok]. These middleware companies allow game

developers to spend more time developing interesting

dynamic games because they remove the need to build

custom physics engines for each game. But these new

dynamic games create a strain on existing pathfinding

strategies as these strategies rely on a static representation

of the virtual world of the game. Therefore, since the

games environment can change in real-time, the

pathfinding strategy also has to occur in real-time. The two

components for basic real-time pathfinding are (i) heading

in the direction of a goal and (ii) avoiding any static and

dynamic obstacles that may litter the path to that goal in

real-time.

This paper will highlight the need for real-time

pathfinding and how effectively a neural network can learn

this initially at a basic level. It will then discuss a test bed

system, currently in development, that incorporates

machine learning techniques into a 3D game engine.

Finally the steps taken to determine the possibility of using

neural networks for basic real-time pathfinding and the

result of these steps will be discussed. The game engine

chosen for our test bed was the Quake 2 engine developed

by id software [Id].

1.1 The Need for Real-Time Pathfinding

Traditionally in computer games, pathfinding is done on a

static scaled down representation of the virtual world that

the game presents [Gra03]. This works fine if there is little

or no change to the virtual world throughout the course of

the game. This was the case in most games up until now as

the sophistication of the game’s real-time physics engine

was limited mainly due to the time required to develop it.

However games are now being built using middleware for

key components of the game, including the physics engine.

Middleware is software written by an external source that

has hooks that allow it to be integrated into a game

developer’s code. Therefore game developers can spend

much more time creating more immersible games with

real-time dynamic scenes. This sounds exciting however it

is being impeded by traditional pathfinding AI that operates

off a static representation of the games virtual environment.

This limits the amount of dynamic objects that can be

added to games, as the pathfinding strategy will have to be

fine-tuned to handle them thus adding more time to the

development of the game.

To allow an AI agent to effectively navigate a dynamic

world it would have to be given real-time awareness of the

environment surrounding it. To achieve this with traditional

methods would require running the pathfinding algorithm

at every move, and this would be computationally

expensive, especially for the limited memory available to

the games consoles of today. Therefore the AI agent will

have to be given some kind of sensors that can obtain

information about its surroundings. This is not difficult to

implement, however a key problem arises in making the

agent decipher useful information from these sensors and

react accordingly in real-time without putting too much of a

strain on the computers resources. Artificial neural

networks are a well known AI technique that provides a

potential solution to this problem.

R.Graham, H.McCabe & S.Sheridan / Neural Pathways for Real-Time Dynamic Computer Games

© The Eurographics Association 2005.

1.2 Neural Networks for Real-Time Pathfinding

An artificial neural network is an information-processing

system that has certain performance characteristics in

common with biological neural networks [Fau94]. Each

input into a neuron has a weight value associated with it;

these weights are the primary means of storage for neural

networks. Learning takes place by changing the value of

the weights. The key point is that a trained Neural Network

(NN) has to ability to generalise on situations that it has

never encountered [Cha04]. This is a particularly useful

feature that should help considerably with dynamic scenes.

There has been research in the robotics field with regard

to using NN’s for real-time pathfinding [Gla95,Leb03,

Leb05]. These approaches typically involve representing

the entire map with a 2D mesh of connected neurons. This

requires a pre-processing phase to set up a neural mesh

representation of a map. However, once created, the mesh

can handle dynamic changes. The problem is that it would

require too many neurons to represent a typical game

environment. This problem is compounded by the fact that

each AI agent would require its own separate neural mesh.

There are many different types of neural networks but the

one particularly suited to real-time games is the Feed

Forward Neural Network (FFNN) due to the speed it can

process data [Fau94]. Therefore it was decided to

investigate how well a FFNN could be trained to decipher

the information presented to it from sensors attached to an

AI agent in a dynamic virtual world. These sensors will

receive real-time data from the physics engine therefore

giving the agent a sense of awareness about its surrounding

environment.

FPS V Neurons

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600 700 800

Thousands

Neurons

F
ra

m
e
s
 p

e
r

s
e
c
o

n
d

Figure 1.1

The definitive measure of success in real-time games is

the frames per second (FPS) rate. For a real-time game

frame rates below 25 - 30 FPS are generally deemed

unacceptable. As shown in figure 1.1 our system can have

well over two hundred thousand neurons active in the

Quake 2 engine at 30 FPS. This translates, depending on

how many neurons a NN is composed of, to thousands of

AI agents being able to use a trained NN at the same time.

1.3 Evolving the Weights of a Neural Network

Figure 1.2

The encoding of a neural network which is to be evolved

by a genetic algorithm is very straightforward. This is

achieved by reading all the weights from its respective

layers and storing them in an array. This weight array

represents the chromosome of the organism with each

individual weight representing a gene. During crossover,

the arrays for both parents are lined up side by side. Then

depending on the crossover method, the genetic algorithm

chooses the respective parents weights to be passed on to

the offspring as shown in figure 1.2.

Training the neural network for basic real-time

pathfinding first required it to learn to (i) head in direction

of goal and then to (ii) navigate around any obstacles that

might litter the path. Therefore the first step will be to see if

the NN can learn these two tasks separately and then finally

learn both of them combined.

2 Training

Reinforcement learning [Cha04] [Rus95] is used to

evolve the NN’s weights through a genetic algorithm (GA)

[Buc02]. This is achieved by rewarding AI agents for

following various rules that the user specifies at different

time intervals. Then the AI agents are then ranked

according to their respective scores, with the top ranking

agents putting a mixture of their weights into a lower

ranking agent. This is analogous to the evolutionary

survival of the fittest model.

2.1 Implementation

The NN and the GA were implemented in C++ and

compiled into a standalone library named the AI Library.

The AI Library gives any program linking to it access to

NN, GA and traditional pathfinding functionality through

high-level commands. Therefore to train the AI agents

within the Quake2 engine the AI Library was linked to the

engine’s source code. Once linked a number of graphical

user interfaces (GUI) were implemented that allow the user

to integrate a NN into the AI agents and evolve them

through a GA.

R.Graham, H.McCabe & S.Sheridan / Neural Pathways for Real-Time Dynamic Computer Games

© The Eurographics Association 2005.

2.1.1 GA Options GUI

The user is given real-time control over all the GA

parameters thus giving the user huge scope to dynamically

change each of them throughout a simulation. These

parameters are the selection function, the crossover

function, mutation probability, evolution time and all the

elements concerned with the rank function. This facilitates

evolution in stages of difficulty, by introducing more

elements as the AI agent learns previous ones, thus

gradually evolving to a more complex behaviour.

2.1.2 NN Options GUI

The NN options GUI allows the user real-time control

over the inputs to each AI agents NN and its activation

function. It also offers the user the facility to bias certain

inputs thus decreasing the search space for the NN initially,

and then gradually removing the bias values at later stages

of the evolution thus gradually increasing the search space.

This again facilitates evolution through different stages of

difficulty. A set of custom maps were also created to

facilitate training the AI agents to learn the basic

components of real-time pathfinding.

3 Results

The first thing that the NN was tested on was its ability to

go towards a goal. The idea here is to have an AI agent

relentlessly pursues a dynamic object around an obstacle

free space. Therefore the agent will decide which way to

move via a NN that takes the relative position of the goal as

its input. The NN has three outputs which are turn left,

move forward and turn right respectively. The output with

the strongest signal will be selected for the next move. This

was learned with ease by the AI agents by scoring them for

moving towards the goal. An interesting result however is

the variety in the solutions the GA produces. This is shown

in figure 3.1 where three AI agents x and y coordinates

were recorded as they moved from the same initial position

to the same goal.

Figure 3.1

The next test was to supply the AI agents with sensors

and insert them into a map with obstacles and evolve them

to use the sensor information to steer around obstacles.

Once again the NN had no trouble learning this behaviour

once scored on valid moves and turning in the correct

direction once the sensors detected an obstacle. This time

the inputs were the sensors and the output was the same as

before.

The next test was to see if a NN could learn to head in the

direction of a goal and avoid obstacles that may litter the

path. The AI agent also has no prior knowledge of the map

and reacts purely on what it senses in real-time. The inputs

provided to the NN were relative position to the goal and

the data received from each of the sensors. This proved to

be very difficult for the NN to learn so much so that a

complete rethink on the training procedures had to be done.

It was also evident that a NN with one hidden layer was not

capable to learning this behaviour. Another major change

that was integrated into the system was the ability to run

the simulation in discreet intervals. This meant at the end of

each interval the agents were reset to their original position

and orientation.

Figure 3.2

This spawned a series of new custom maps which we call

the bot boot camps. These maps contain sets of parallel

obstacle courses, each of which takes a single AI agent for

discreet evolution. Figure 3.2 shows an outline of one of

the custom bot boot camp maps. Each bot starts at the left

side of the map (S) and has to make its way to the goal on

the right (G). This finally produced AI agents that would

head towards a goal and avoid obstacles on the way.

Figure 3.3

R.Graham, H.McCabe & S.Sheridan / Neural Pathways for Real-Time Dynamic Computer Games

© The Eurographics Association 2005.

As shown in figure 3.3 the path the AI agent takes is not

the smoothest of paths but illustrates that the agent has

learned to head towards the goal position and avoid

obstacles on route with no prior knowledge of the map.

3.1 Conclusion

While NN’s seemed an obvious choice for our

implementation of real-time pathfinding, due to their speed

at deciphering real-time data and there ability to generalise,

they proved very difficult to train. However, the results that

have been achieved so far demonstrate that NN can learn

the basic components of real-time pathfinding. This is an

exciting prospect as it could become the base of a real-time

pathfinding Application Programming Interface (API) that

could be used by game developers for low level pathfinding

in a dynamic game map. The only element the game engine

would have to provide would be a ray casting function

which is a basic component of any physics engine.

4 Future Work

Figure 4.1

Future work will involve refining the training procedures

further so as to obtain even better results. We will also

investigate how the use of hybrid neural networks [Mas93]

might compliment our results. These would be capable of

breaking up the problem into its two components thus

reducing the search space for the full problem. Since there

will constantly be situations where a higher planning

algorithm will be needed to guide the AI agent in complex

maps, we will investigate the concept of using a trained NN

to cut down the number of waypoints required to represent

these game maps. Figure 4.1 illustrates how the simple map

requires four waypoints to represent it. Whereas by using a

trained NN with sensors the map can be represented by two

waypoints with the added benefit of being able to avoid any

obstacle that may litter the map during runtime.

References

[Buc02] Buckland, Mat. AI Techniques for Game

Programming. Premier Press, 2002..

[Cha04] Champandard, Alex J. AI Game Development.

New Riders Publishing, 2004.

[Fau94] Fausett, Laurene. Fundamentals of Neural

Network Architectures, Algorithms, and

Applications. Prentice-Hall Inc, 1994.

[Gla95] Glasius, R., Komoda, A., & Gielen, S. C. A. M.

Neural network dynamics for path planning and

obstacle avoidance, Neural Networks, vol 8, 125-

133. 1995.

[Gra03] Graham, R., McCabe, H. & Sheridan, S. (2003)

Pathfinding in Computer Games. ITB Journal

Issue Number 8, December 2003.

[Havok] Havok. Available: www.havok.com.

[Id] id.Available:

www.idsoftware.com/games/quake/quake2/.

[Leb03] Lebedev, D. V., Steil, J. J., & Ritter, H. Real-

time pathplanning in dynamic environments: A

comparison of three neural network models. In

proceedings of IEEE international conference on

systems, man, and cybernetics (pp. 3408-3413)

2003.

[Leb05] Lebedev, D. V., Steil, J. J., & Ritter, H. The

dynamic wave expansion neural model for robot

motion planning in time-varying environments.

Neural Networks, vol 18, 267-285. 2005.

[Mas93] Masters, Timothy. Practical Neural Network

Recipies in C++. Boston: Academic Press, 1993.

[Rend] Renderware. Available: www.renderware.com.

[Rus95] Russel, Stuart, and Peter Norvig. Artificial

Intelligence a Modern Approach. Prentice-Hall,

Inc, 1995.

